
Implementation of Binary Search on a Singly
Linked List Using Dual Pointers

Sreemana Datta1, Parichay Bhattacharjee2

1 School Of Education Technology (Master In Multimedia Development), Jadavpur University, India

 2 Department Of Computer Science & Engineering, Institute of Engineering & Management, India

Abstract— To perform Binary Search based on Divide and
Conquer Algorithm, determination middle element of a series
of elements is necessary. But memory allocation for a singly
linked list is dynamic and not contiguous. Hence,
determination of middle element becomes difficult. This paper
aims to provide an alternative approach using two different
pointers to perform binary search on a singly linked list.

Keywords— Binary Search, Fast Pointer, Slow Pointer

I. INTRODUCTION

Binary Search is a widely used searching algorithm based
on divide and conquer algorithm. Binary Search is
particularly used in cases where the size of the input set of
data is large and hence this approach provides better result
in comparison with the linear search technique. However
this technique requires the middle position of the sorted
sequence to be identified so that the search may proceed
from there. In case of conventional single dimensional
arrays, determination of the middle element is easy and can
be performed in O(1) or constant time using direct access.
In case of linked list, as the memory allocation is non-
contiguous, hence, determination of this middle element
becomes difficult. We present a solution of the same using
two pointers for determining the middle element of a
sequence and hence perform binary search on that particular
sequence.

II. RELATED WORK

Binary Search is usually fast and efficient for arrays and is
difficult to implement for singly linked lists. This is because
in an array, accessing the middle index between two given
array indices is easy and fast. It usually involves finding out
the average of the two indices and accessing that particular
element. Thus the running time is constant .i.e. O
(1).However in linked list, To access the middle node, we
need to traverse the entire list, node by node and keep a
count of the elements, and then traversing again up to half
the counted value to go to the middle element. Thus the
running time of finding middle node increases. We adopt an
alternative algorithm to compute the middle element of a
linked list.

III. ALGORITHM TO FIND OUT THE MIDDLE ELEMENT

We use two pointers named as Fast Pointer and Slow
Pointer to compute the middle element of a linked list. We
initialize both the pointers to the beginning of the linked list

or head node at the first. Now we traverse through the list
node by node. For every single step of the Slow Pointer, the
Fast Pointer moves twice. Thus, when the Fast Pointer
reaches the end of the list, the Slow Pointer has made half
the number of movements as the Fast Pointer and hence
points to the middle element as required.

IV. SOURCE CODE FOR DETERMINING THE MIDDLE

ELEMENT

node * middleNode(node * startNode , node * endNode)
{
 if(startNode == NULL)
 {
 // If the linked list is empty

 return NULL;
 }

 node * slowPtr = startNode;
 node * fastPtr = startNode -> next;

 while (fastPtr != endNode)
 {
 fastPtr = fastPtr -> next ;

 if(fastPtr != endNode)
 {
 slowPtr = slowPtr -> next ;
 fastPtr = fastPtr -> next ;

/*

Note that for each loop iteration,
slowPtr moves just one location
while fastPtr moves two nodes at a time.

*/
 }
 }
 return slowPtr ;
/*
At the end , the slowPtr will be
pointing to the middle node
*/
}

Sreemana Datta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1908-1910

www.ijcsit.com 1908

V. ALGORITHM FOR IMPLEMENTING BINARY SEARCH

ON THE LINKED LIST AFTER COMPUTING THE

MIDDLE ELEMENT

After implementing the function to get middle node using
the concept of dual pointers, we now need to focus on the
algorithm itself. We proceed in a similar way as binary
search is implemented in arrays.

 We have the starting node (set to Head of the list),
and the ending node (set to NULL initially).

 Then the middle node between the startNode &
endNode is calculated using the method described
earlier.

 If middleNode matches the required value to
search , we have found the required node searched
for and we return it

 else, if middleNode's data < value , then we need
to move to upper half (by setting startNode to
middle's next)

 else we move to lower half (by setting endNode to
middle)

Fig 1. Determination of middle element of a linked list

using two pointers.

Further to these, decision on the base case is necessary. It is
important to decide when to terminate the loop as it cannot
run infinitely. When dealing with arrays, the loop
termination condition was index of start > index of end. But
in linked list, we deal with nodes, so, the concept of indices,
as in arrays, does not arise.A solution to this is keeping a
check on values and terminate if : starting node's data >
ending node's data. Howwever this check would fail if the
list is comprised of all nodes with the same value. We then
decide upon the base case as when the entire list gets
traversed,we encounter the condition where endNode points
directly before startNode i.e. endNode->next == startNode.
This marks the end of iterations as the entire list has been
traversed.

VI. SOURCE CODE FOR IMPLEMENTING BINARY SEARCH

ON THE LINKED LIST AFTER COMPUTING THE

MIDDLE ELEMENT USING THE CONCEPT OF DUAL

POINTERS

node * binarySearch(int valueToSearch)
{
 node * startNode = head;
 node * endNode = NULL;

 do
 {
 node * middle = middleNode(startNode ,

endNode);

 if(middle == NULL)
 {
 // Searched Element Not Present
 return NULL;
 }

 if(middle->data == valueToSearch)
 {
 return middle;
 }

 else if (middle->data < valueToSearch)
 {
 // need to search in upper half
 startNode = middle->next;
 }
 else
 {
 // need to search in lower half
 endNode = middle;
 }

 }while(endNode == NULL ||

endNode->next != startNode);

 // data not present
 return NULL;
}

VII. CONCLUSIONS

Implementation of Binary Search on single dimensional
arrays is simpler than implementing it on linked lists due to
the fact that linked list nodes are allocated memory non
contiguously and also that there is no concept of index in a
linked list as there is in arrays. The approach of Fast and
Slow Pointers as described tries to implement binary search
and any other divide and conquer algorithm on a singly
linked list that relies on the determination of middle
element of a sequence. Unlike arrays, where determination
of middle element is done via direct access at O(1) time,
computing middle element for a singly linked list may take
upto O(n) time where n is the number of elements in the list.

REFERENCES
[1] S. M. Metev and V. P. Veiko, Laser Assisted Microtechnology, 2nd

ed., R. M. Osgood, Jr., Ed. Berlin, Germany: Springer-Verlag,
1998.

[2] J. Breckling, Ed., The Analysis of Directional Time Series:
Applications to Wind Speed and Direction, ser. Lecture Notes in
Statistics. Berlin, Germany: Springer, 1989, vol. 61.

[3] S. Zhang, C. Zhu, J. K. O. Sin, and P. K. T. Mok, “A novel ultrathin
elevated channel low-temperature poly-Si TFT,” IEEE Electron
Device Lett., vol. 20, pp. 569–571, Nov. 1999.

[4] M. Wegmuller, J. P. von der Weid, P. Oberson, and N. Gisin, “High
resolution fiber distributed measurements with coherent OFDR,” in
Proc. ECOC’00, 2000, paper 11.3.4, p. 109.

Sreemana Datta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1908-1910

www.ijcsit.com 1909

[5] R. E. Sorace, V. S. Reinhardt, and S. A. Vaughn, “High-speed
digital-to-RF converter,” U.S. Patent 5 668 842, Sept. 16, 1997.

[6] (2002) The IEEE website. [Online]. Available:
http://www.ieee.org/

[7] M. Shell. (2002) IEEEtran homepage on CTAN. [Online]. Available:
http://www.ctan.org/tex-
archive/macros/latex/contrib/supported/IEEEtran/

[8] FLEXChip Signal Processor (MC68175/D), Motorola, 1996.
[9] “PDCA12-70 data sheet,” Opto Speed SA, Mezzovico, Switzerland.

[10] A. Karnik, “Performance of TCP congestion control with rate
feedback: TCP/ABR and rate adaptive TCP/IP,” M. Eng. thesis,
Indian Institute of Science, Bangalore, India, Jan. 1999.

[11] J. Padhye, V. Firoiu, and D. Towsley, “A stochastic model of TCP
Reno congestion avoidance and control,” Univ. of Massachusetts,
Amherst, MA, CMPSCI Tech. Rep. 99-02, 1999.

[12] Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specification, IEEE Std. 802.11, 1997.

Sreemana Datta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1908-1910

www.ijcsit.com 1910

